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COMMENT 

Relativistic extensions of dynamical systems 

J P Constantopoulos 
Physics Department, Division of Astrophysics-Astronomy-Mechanics, University of 
Athens, GR 157 71 Zografos, Athens, Greece 

Received 17 October 1984 

Abstract. Extensions of holonomic dynamical systems are presented as formal generalisa- 
tions of special relativity. Their construction is based on a weak correspondence principle 
and a particular class of solutions is given explicitly. In some cases the symmetry content 
of the theory is explored and the existence of a conservation law is established. In addition, 
examples of dynamical systems which exhibit time reversibility and whose extensions are 
time-irreversible are briefly discussed. 

Let M be an n-dimensional differentiable manifold which is connected and Hausdorff. 
Here M is identified with the configuration space of a holonomic dynamical system 
S, with n degrees of freedom. If (x '  . . . x " )  is a local coordinate system on the 
neighbourhood U of x E M the evolution of the system S,, is described in this 
neighbourhood, by means of the equations 

i = l ,  . . . ,  n 

where T = $g,x'i', x '  = dx ' /d t  is the kinetic energy and F, is the generalised force. 
The triplet D = (g!,, F, ; t )  describes the system, up to a choice of the initial conditions, 

in the neighbourhood of the point x E M. Conversely it is assumed that any such triplet 
D, where g, is a tensor of rank n, locally defines a dynamical system S,, in the 
neighbourhood U of the configuration space M, via (1). The triplet D will be called 
the (local) description of the system S ,  in U s  M. For a given description D the tensor 
g, introduces locally on M the geometry of a Riemannian space V, and the equations 
of motion ( 1 )  can be written in the form 

Du' d2x'  d d  dxk  
d t  dt  d t  d t  

= +{ j lk } - -=F ' ,  

where { , ' k }  are the Christoffel symbols of the second kind with respect to the metric g,. 
The dynamical system S ,  is by definition autonomous. Furthermore it is stipulated 

that the time parameter in the description D is a matter of convention. This means 
that another description fi = (g,,, p ;  ?) may exist, leading to the same paths in U (i.e. 
the same trajectories when parametrisations are disregarded). Hence, D and b describe 
dynamical systems which are corresponding systems in the sense of Painleve, i.e. systems 
whose paths coincide in U (PainlevC 1894). Non-trivial examples of corresponding 
systems have been given by Levi-Civita (1896) and Agostinelli (1937). However, the 
important point for our purposes is that it can be proved (this proof will not be given 
here) that, under certain general requirements, the notion of corresponding systems 
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naturally induces an equivalence relation on the set of all dynamical systems, which 
are defined on U c M. Clearly, this equivalence relation suggests a new point of view, 
where the conventional dynamical system is replaced (locally) by its equivalence class. 

In this comment we shall introduce a specific approach which avoids the intricacies 
of the aforementioned 'equivalence problem' and which takes advantage of the arbitrari- 
ness in  the choice of the time parameter. In particular we shall introduce an extra 
degree of freedom which will be identified with the time parameter in the local 
description Du, i.e. 

xo = ct (2) 

where c is an arbitrary constant. Equation (2) implies an extended neighbourhood 
U x R, which can be regarded as the local trivialisation of the new configuration space 
MI. This configuration space is not, in general, the product M x R ,  where R =  
(-a, +CO) but rather a line-bundle over M. Now, a class of systems S, , ,  can be 
constructed over the extended configuration space MI, such that their paths and their 
time parameter are related to those of the original S,. This construction will be 
presented into a step-by-step procedure and will be such that the paths of the two 
systems are related via the projection map p : M i  + M, where p - ' ( x )  = R for each x E M. 
The essential feature of this procedure is that the construction of the extensions Sn+, 
is based on a generalisation of the notion of equivalence introduced previously. Thus, 
a certain portion of the deformation class of the original system is finally realised by 
means of the extensions S, , , .  

Let D = (gabr p a :  T ) ,  a, b = 0, 1 . . . n, be the local description in U X R of a system 
S, , , ,  defined over the extended configuration space Mi. Now the new time parameter 
is no longer arbitrary but it is defined in an invariant way, i.e. 

ds2 = c2 d r 2  (3) 

where ds2 is the element of length in the Riemannian space V,,, ,  induced locally on 
MI via the tensor field gab. This means that the rate of change 

dt/d.r =f( t ,  XI, XI), (4) 

t ' =  t X I k  = Xfk(X') .  ( 5 )  

can immediately be deduced from (3) in the coordinate systems 

Clearly f is not a scalar with respect to arbitrary coordinate transformations in Vn+l, 
but it is a scalar in V,. Furthermore, equation (4) may be regarded as relating the 
coordinate time to the proper time 7 along an arbitrary, but otherwise fixed, trajectory 
of the system S, , , .  I f f  is known the velocity of can be expressed in terms of the 
velocity of S,, i.e. 

U" = ( C A  f u k )  ( 6 )  

in the coordinate systems ( 5 ) .  Next it is assumed that in the coordinate systems ( 5 )  
both f and the tensor g a b  are expressed through g # k  and in terms of 'geometric objects' 
which are defined in V,,. This assumption restricts the possible forms of the extended 
tensor gab in the coordinate systems ( 5 ) ,  to the following cases: 
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where $2 = g']$,$,. The $,, cp and p are arbitrary and in general they may depend on 
t. From ( 7 )  and (3)  the form off in the coordinate systems ( 5 ) ,  is uniquely determined. 
In particular, for each case we have respectively 

where we have fixed the positive sign in the definition of 1: 
Equations ( 7 )  guarantee that in all cases the decomposition 

{]'k}ex = {/'k} + cjk (9) 

holds, where the Christoffel symbols { },, and { } refer to the spaces V,,, and V, 
respectively and where Cfk is a tensor in V,,. Now the equations of motion of the 
system S,,, can be written in the form 

( D u ' / d t ) +  C ~ k ~ ' ~ k + 2 ~ { 0 ' k } ~ k  + 
= - ( d l n  f / d t ) u ' + f  'F '+f 'F;uU'+cf 'FA 

c ( d I r , f / d t ) + { ~ k } u J u k + 2 c { ~ l } u J + c 2 { ~ O } = f 2 ~ o +  f 'g;u '+cf- l fE ( l o b )  

where the absolute derivative D/dt  refers to V, (here the force F" has been assumed 
to be linear with respect to the velocities U " ) .  The decomposition ( I O )  characterises 
the coordinate systems (5).  In fact, in these systems the trajectories of S,,, naturally 
split into a projection lying in the neighbourhood U and to a projection along the 
coordinate time axis. In addition, equations ( l o a )  and (8) can be independently 
integrated and equation ( l o b )  can be regarded simply as a compatibility condition. 

The elimination of the term - (d  In f / d t )  between ( l o a )  and ( lob)  naturally intro- 
duces the adjoint system sn locally defined on M via ( l o a ) .  The loca! description of 
the adjoint system in U is of the form d = (gl , ,  F l ;  t ) .  Thus, both systems referJo the 
same V, and admit the same time convention. In addition, the adjoint system S ,  may 
be regarded as the image of the system S, , ,  locally on M under the projection map 
p. Our requirement that the systems S, and 2, are equivalent, transfigures the projection 
map p into a local homomorphism of dynamical systems, in the sense that now p projects 
the paths of S,,, on the paths of S,. The above requirement is a kind of correspondence 
principle which relates the systems S,,, and S,. In fact this is the strongest correspon- 
dence principle which is not trivial. However, for our purposes it is convenient to 
introduce a weaker correspondence principle. Thus in the following we consider the 
notion of pseudo-paths of the system S,, with respect to the pair ( F ' ,  Ff). The equation 
of these curves is 

d2x '  dx' d x h  dx' dx '  
d t' d t  dt  dt  d t  
7 - t  - -= aF '+PF) -+  7- 

where a, p and y are functions of the velocities in general. The notion of pseudo-paths 
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restricts the form of the involved force to that of the RHS of equation ( 1  1).  Furthermore, 
equation (1 1 )  includes the paths of the system S, up  to equivalence and also generalises 
the notion of subpaths introduced by Yano (1944). In particular, equation ( 1  1 )  reduces 
to the equation of subpaths if F; = 0. Now tke weak correspondence principle requires 
that the pseudo-paths of the systems S ,  and S, are the same (i.e. they refer to the same 
pair (F",  FJ)). The class of systems which have the same pseudo-paths with S, is the 
deformation class of S,. Clearly, the deformation class of S,  includes its equivalence 
class as a proper subclass. 

We shall call relativistic extensions of the system S ,  the extensions S,,, which result 
through the above procedure. An interesting class of relativistic extensions occurs in 
the special case 

c ; k  = 0, F a  = R ;  = O .  ( 1 %  b )  

Comparing equations ( I O U )  and (1 1 ) in the coordinate systems (5) and then identifying 
all terms which are not proportional to the velocity U', with the pair ( F ' ,  Fj) for 
(Y = /3 = 1, we get a class of forceless relativistic extensions S,,,. In particular we have 

(Y): P ( t )  =exp(-At/2), d t ,  x) = c p ( f )  (22% b )  

F'  = 0, Fi = A6j ( A  = constant), (23% b )  

where the covariant differentiation ',' refers to the space V;, and where we have made 
use of the assumption that S ,  is autonomous. 

From ( 15) it is clear that the cases A = 0 and A f 0 correspond to conformal solutions. 
Thus, for the subsequent analysis it is sufficient to assume that A = 0. Now from (13a) 
and (16) it is clear that relativistic extensions of type A and B are generated by the 
Killing uectors admitted by the space V,. If in addition cp' is an  invariant of the group 
of motions, the generator of the extension also generates a one-parameter subgroup 
of the group of motions, which leaves invariant the original system S,, as well as its 
extension. Stated in a slightly different way this means that the Killing vector in V, 
naturally extends into a Killing vector ta in V,,,. However, extensions of type A and 
B have an additional symmetry, which can be identified as corresponding to a transia- 
tion of the coordinate time. In all these cases there are conservation laws corresponding 
to a linear first integral of the equations of motion of the system S , , , .  In addition, in 
the case of extensions of type B the original system S,  also admits a linear first integral, 
as a result of the form of (17b) (A  = O ) .  
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Equations (7 ) ,  ( l S b ) ,  (18a) and ( 2 0 a )  indicate that the extensions S,,,, do not 
exhibit reversibility with respect to the coordinate time, in general, although the original 
system may be invariant under the time parameter reversal: t + - t .  In particular, in the 
case of extensions of A and B types, the action of time-reversal changes the sign of 
the generator: ti + -ti. These cases are rather exceptional. For example, a time-reversible 
system S, admits extensions of type A if 

(p2 - +* = constant, +, = +,,, + I U .. = o ( 2 4 4  b, c )  

and extensions of type B if in addition to ( 2 4 b )  and (24c)  A = 0. Now condition (24c )  
means that the original V, is a V ( 0 )  or a V ( i )  (Kruckovic 1961,1967). On the other 
hand, in the cases where the extension is of type r, there are no restrictions about the 
original V,, ; if the latter happens to be a space of constant curvature, then r/3 extensions 
of the original system lead to a Robertson-Walker metric ( q 2 =  1, n = 3). In this 
particular case the extended system exhibits a time asymmetry defined through the 
sign of d p l d t .  

In brief a prescription for the construction of relativistic extensions of holonomic 
systems has been given, based on a weak correspondence principle. In the cases where 
the extended metric is indefinite the resulting extensions introduce formal generalisa- 
tions of special relativity. However, in all cases the extended systems can be regarded 
as forceless geometrisations of the original system. In particular, the extensions of Ti 
type describe Newtonian systems in the limits where u / c < <  1 and V / c 2 < <  1 .  Here 
'p2 = 1 7 2 V /  c 2 ,  p2 = 1 and the deformation induced by the construction now becomes 
negligible cf- 1).  In some cases the construction leads to extended systems that exhibit 
a time asymmetry, although the original one was invariant under time reversal. These 
examples are non-trivial since friction terms have not been included in the formalism 
of the original Cystem. On the contrary, they indicate that the time-asymmetry of the 
extension is a manifestation of the fact that the deformation class of the original system 
includes non-reversible systems. This point of view should be compared with an 
algebraic approach to the problem of irreversibility recently introduced (Constan- 
topoulos and Ktorides 1984). In fact the details of algebraically deformed members, 
within the deformation class of the original system, have been deliberately avoided 
here. However, their influence has been preserved, more or less, within the structure 
of the extension. 

It is a pleasure to thank Dr C N Ktorides for valuable discussions and interesting 
remarks. 
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